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ABSTRACT

In this report, we analyzed a cascaded coding scheme for a random error channel with
a bit-error rate ¢. In this scheme, the inner code C; is an (n;,m;f) binary linear block
code which is designed for simultaneous error correction and detection. The outer code
(', is a linear block code with symbols from the Galois field GF(2%) which is designed
for correcting both symbol errors and erasures, and is interleaved with a degree m,;. A
procedure for computing the probability of a correct decoding is presented and an upper
bound on the probability of a decoding error is derived. The bound provides much better
results than our previous bound [1] for a cascaded coding scheme with an interleaved outer
code. Example schemes with inner codes ranging from high rates to very low rates are
evaluated. Several schemes provide extremely high reliability even for very high bit-error

rates say 10~! to 1072.




1. Introduction

In this paper we investigate a coding scheme for error control for a random error
channel with bit-error rate e. The scheme is achieved by cascading two linear block codes,
called the inner and outer codes. The inner code, denoted (', is a binary (n;,m;{) code
with minimum distance d; which is designed to correct ¢; or fewer errors and simultaneously
detect A;(A\; > t;) or fewer errors where t; + A; +1 < d; {2]. The outer code is an (n2, k)
code with symbols from the Galois field GF(2¢) and minimum distance d,. Each code
symbol of the outer code is represented by a binary {-tuple (called a ¢-bit byte) based on

a certain basis of GF(2%). The outer code is interleaved with a degree (or depth) m;.

The encoding is performed in two stages as shown in Figure 1. First a message of k;¢
binary information digits is divided into k; {-bit bytes. Each £-bit byte is regarded as a
symbol in GF(2¢). These k, bytes are encoded according to the outer code C, to form an
n,-byte codeword in C;. This outer codeword is then temporarily stored in a buffer as a
row in an array. After m; outer codewords have been formed, the buffer stores a m; x n,

array of code symbols as shown in Figure 2, which is called a segment-array. Each row of

a segment-array is called a section. Each column of a segment-array consists of m; £-bit
bytes (or m, ¢ bits), and is called a segment. There are k; data segments and n; — k; parity
segments. At the second stage of encoding, each segment of a segment-array is encoded
according to the inner code C; to form an n,-bit codeword, which is called a frame. The
ny frames corresponding to the n, segments of a segment-array form a code block. The
two-dimensional format of a code block is shown in Figure 3. A code block is transmitted
column by column (or frame by frame). In fact each frame is transmitted as soon as it has

been formed. Note that the outer code is interleaved with a degree (or depth) m;.

The decoding for the proposed scheme also consists of two stages, the inner and outer
decodings. When a frame in a code block is received, its syndrome is computed based
on the inner code ;. If the syndrome corresponds to an error pattern € of ¢; or fewer
errors, error correction is performed by adding € to the received frame. The n, — k; parity

bits are removed from the decoded frame, and the decoded m;-byte segment is stored



as a column in a receiver buffer for the second stage of decoding. Note that a decoded
segment is error-free, if the number of transmission errors in a received frame is t; or less.
If the number of transmission errors in a received frame is more than A;, the errors may
result in a syndrome which corresponds to a correctable error pattern with ¢; or fewer
errors. In this case, the decoding will be sucéessful, but the decoded segment contains

undetected errors. If an uncorrectable error pattern is detected in a received frame, then

the erroneous segment is declared to be erased. We call such a segment an erased segment.
An erased segment is not necessarily being erased from the received buffer, 1t is simply
ignored during the second stage of decoding (the outer code decoding). After n, frames of
a received code block have been processed, the decoder buffer contains a m; x n, decoded
segment-array. Each column of this decoded segment-array is either a decoded segment
or an erased segment. A decoded segment may contain symbol (or byte) errors which are
distributed among the m; sections, at most one symbol error in each section. An erased
segment creates m; symbol erasures, one in each section. Therefore, each section in the
decoded segment-array may contain symbol errors and erasures. Now the decoder starts
the second stage of decoding, each section is decoded based on the outer code C;. The
outer code is designed to correct both symbol errors and erasures. Maximum distance-
separable codes (or Reed-Solomon codes) with symbols from GF(2¢) are most effective for

this purpose.

Let 7 be the number of erased segments in a decoded segment-array. If ¢ is greater than
a certain pre-designed erasure threshold T,,(Tes < dz — 1), the outer code decoder stops
the decoding process and declares an erasure (or raises a flag) for the entire segment-array.
Otherwise the outer code decoder starts the error-correction operation on each of the m;

sections. Let t, be the designed error-correction capability of the outer code C; with
ty < (dy — 1—Tes)/2. (1)

If the syndrome of a section in the decoded segment-array corresponds to an error pattern
of 7 erasures and t, or fewer symbol errors, error correction is performed. The values of
the erased symbols and the values and locations of symbol errors are determined based

on a certain algorithm. If more than ¢, symbol errors are detected, the receiver stops the
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decoding process and declares an erasure (or raises a flag) for the entire segment-array. If
all the m; sections of a segment-array are successfully decoded, then the k; decoded data

segments are accepted by the receiver and delivered to the user in proper order.

When a received block is detected in errors and can net be successfully decoded, the
block is erased from the receiver buffer and a retransmission for that block is requested.
However, if retransmission is either not possible or not practical and no block is allowed
to be discarded, then the erroneous block with all the parity symbols removed is accepted

by the user with alarm.

In the next three sections, the error performance of the proposed scheme is analyzed
and an upper bound on the probability of a block decoding error is derived. In Section 5,
various example schemes are considered and their error probabilities are evaluated. The
inner codes being used in these example scheme range from high rates to very low rates.
High rate inner codes are suitable for near-earth satellite communications for large file
transfer. Low rate inner codes such as biorthogonal codes or the (24,12) Golay code are
suitable for low data rate deep space communications. All the example schemes provide

extremely high reliabilty even for very high bit-error rates, e.g., 10~! to 1072,

2. Probabilities Related to the Inner Code Decoding

For 1 < u < m; and a in GF(2%), let p.(u,a) be the joint probability that a segment
is not erased and the u-th symbol of the segment contains an error whose value is a.
Clearly, if a = 0, the u-th symbol is error-free. The probability p.(u, @) can be computed
if we know the detail weight distribution of the inner code C;. A procedure for computing

pe(u, a) is given in Appendix-1.

Let Pc(”(u), and Pg)(u) be defined as follows:

P(u) = pe(u, o), (2)
PRw)= Y pelu,a), (3)
aeGF(2Y)
aZ0
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Clearly, P,_!l)(u) is simply the probability that a segment is not erased and its u-th
symbol is error-free; and Pé:)('u) is the probability that a segment is not erased and its

u-th symbol is erroneous. Let P!} be the probability that a segment is being erased. Then
PM(w) + P w) + PLD = 1. (4)

Once Pc(”(u),Pe(i)(u) and P!;’ are known we can compute the probabilities of a correct
decoding and an incorrect decoding for the u-th section of a segment-array. This is done
in the next section.

3. Probabilities Related to the Quter Code Decoding
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an erasure and an incorrect decoding for the u-th section of a segment -array. Then
Pc(u)+Pes(u)+Per(u):1 (5)

and P.(u) is given by

P = () (] () ) [ o

1=0
In the following, we will derive an upper bound on the error probability P.,(u) for decoding

the u-th section of a segment-array.

Let us number the segments in a segment-array from 1 to n;. Suppose the number
of erased segments after the inner code decoding is T, or less. Let E, be the set of the
erased segment numbers. For f ¢ E,, let ef(u) be the error symbol at the u-th symbol
position of the f-th decoded segment. Note that es(u) is the symbol error at the f-th
symbol position of the u-th section of a decoded segment-array. Suppose the u-th section
of a segment-array is decoded incorrectly. Then the u-th section is decoded into an outer
codeword @, + ©, where ¥, is the actual transmitted outer codeword and 7 is the nonzero
outer codeword induced by the outer code decoding. Let vy be the f-th symbol of .
Clearly if v # 0, there is an error at the f-th symbol position of the decoded word v, + ©.

Define the following sets associated to o.

_é{f; Uf#O&Ildf%Es}v
6
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o é{f : ef(u) # 0,05 =0 and f ¢ E}, (8)

and

1 é{f: ef{u) =v; #0and f ¢ E }. (9)

When a section is decoded based on the outer code C», only t, or fewer symbol errors and

T.s or fewer symbol erasures are corrected. Hence, the following inequality holds:
[H(v)] + [W(2)| - [J(v)] <t (10)

where | M| denotes the number of elements in set M.

Forgiven1 < u < m;,%eCy, E; C {1,2,--- ,nz}, H € {1,2,---,np}and J C {1,2,---,n,

such that H is disjoint from E, and W(%),J C W(%) and |H| + |W(7)| — |J] < t2, let
Pe(?‘l”E”f)’H"])

be the probability of the occurrence of an error pattern induced by the inner code decoding

for which H(?) = H and J(?) = J. Then

ny—i—w—~h

P.(u,Eq,5,H,J) = [Pe‘s”]i [P“’ u)]h [P(l)(u ]
Jlpewvp) [T (1= P = pelu,vy)), (11)

fed FeW(5)—J

where 1 = |E,|,w = |W(?)| and h = [H|.

Let W be a subset of {1, 2, .-+, n2} — E; — H such that W 2 J, d; — ¢ < |W] and
h + |W|—j <t3. Let C2(W) be defined as the following subset of codewords in C5:

>

Ca(W)={(v1, v2,- +,n,) € C2 : vy #0if and only if fe E, U W} (13)
Note that, for veC2(W), W(v) = W. Hence w = |W(7)| = W.
Next we want to estimate the following sum:

> Pe(u,E,0,H,J)
DeCo(W)
7
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Since 1 < Ty, it follows from (1) that
d2 >t + 2ty + 1. | (13)
Since d> < w +iand h + w — j < t;, we have that
j2i+w-d; > 0. (14)
Let J' be a subset of J such that
|J' =i+w — ds. (15)

For any a;eGF(2%) — {0} with feJ', consider two different codewords & = (v1,v2,**,Vn,)
and ' = (vy,v5,---, v, ) in C2(W) such that vy = v'f = ay for feJ'. Since the weight of

© — o' is at least d;, we have that
vy # 0%, for f(WUE, - J'. (16)

It follows from Schwarz’s inequality that

2t-2
Z H pe(u,vs) < H Pe(u,af) Z [pe(u77q)]1+d2_1_w ,» (17)
be{0eCy(W): vy=ay for feJ'} feJ feJ' q=0
where v is a primitive element of GF(2¢). Therefore,
w—d, 272
i+w—d; . .
ST pelw o) < [PP) pelu,y)PT47 (18)
BeC{ W) fed g=0
Thus we have that
1 h+i+w—d ny—t—w—~h
S P, Bw H,J) < [PD] [P " [P )
DeCo (W)
woj 272 _ '
QPO Y pelwy (19)
q=0




Let P(u,i,w,h,j) denote the right-hand side of (19). Since P..(u) is the sum of

N P.(u,Es,©,H,J) taken over all possible E,, W, H and J, we have that
peCy(W)

Tes ng—1 min{ty,ny—i—w}

DE )T

1=0 w=dy—1 h=0
> () Prusiw b, (20)
j=w+h-t; J

4. Probabilities Related to the Decoding of a Code Block

Let P. be the probability of a correct decoding of the m; sections in a segment-
array after the inner decoding. Clearly P, is the probability of a correct block decoding.

For a binary m;j-tuple (aj,az,---,am,), let Pé,]a)h...‘a denoted the probability that a

my
segment during the inner code decoding is not erased and the u-th symbol of the decoded
is

segment is error-free if and only if a, = 0. A procedure for computing Pe(,la)l,---,a,,,l

given in Appendix-II. For a positive integer n and integers j, with 1 < h < m; such that

0 <jn<n,let P j,...j.. (n) be defined by

‘]m‘
n
(1 - am
Z Pewa)lqa'Zy"'aml ‘X;ll Xzaz ot ‘Xmll =
(al,az,---,aml)c{O,l}ml
n n n i i j
1 2 rJm
E S Z Pevjl ’j2""ajm1 (n)X] ‘X2 e A"nl1 * (21)
=0 ;2=0 jm1:0
Then P, is given by
TC‘ n
2
Pc = ( ) Z Z Z P 7]11J2s ’J"‘l (n2 - 2) (22)
i=0 J1=0  j2=0

It is feasible to compute P, for small m,,1, and relatively small min{k,,n; — k;}.

Note that an incorrect block decoding occurs if one or more of the m; interleaved

sections in a segment-array are decoded incorrectly. Hence the probability of an incorrect
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block decoding, denoted P.,, is bounded above by

P,

A
o~
3
BN
)
o
&

It follows from (20) and (23) that we have the following bound on P.,:

Te. n el ‘Nno — 1
,2 -_
Pe<y (7)) X2 ( , )
1=0 w=d,—1

min{t;,n—i—w} . w m,
g;o (nz —;—w) j:u§_t2 (1]‘) ; P(u,i,w,h, ). (24)
Let P., denote the probability of a block erasure (decoding failure). Then
P.+ Pep + Py = 1. (25)
From (22) and (25), we can compute
Per + Pes =1 - P..

5. Example Schemes

In this section, fifteen example schemes are considered and their error probabilities
are evaluated. In these example schemes, the inner codes range from high rates to very
low rates, and the outer codes are Reed-Solomon (RS) (or shortened RS) codes. The
inner codes are listed in Table 1 in descending order of the rates. The first five inner
codes, C1(1) to C1(5) are shortened distance-4 Hamming codes. The next three codes,
C1(6) to C1(8) are obtained by shortening the even subcodes of primitive BCH codes of
length 63. The sixth and seventh codes, ("1(6) and C;(7), can be decoded with a table
look-up decoding. The eighth code (';(8) is majority-logic decodabe in two steps [2], and
its decoder can be implemented easily. C';(9) is a quadruple-error correcting Goppa code.
The tenth code is an extended primitive BCH code. In fact, it is also a Reed-Muller code
and is majority-logic decodabe. C';(11) is the extended (24,12) Golay code which is widely
used for satellite and deep space communications. C4(12), C1(14) and C4(15) are low-
rate biorthogonal codes (or first-order Reed-Muller codes). C'1(13) is a quadruple-error
correcting one-step majority-logic decodabe code [2].
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The parameters of the outer codes are given in Tables 2, 3 and 4. The first 10 example
schemes and the twelveth example scheme use the same outer code which is the NASA
standard (255, 223) Reed-Solomon code with symbols from G F(2%) and minimum distance
33. However, various erasure and error-correcting threholds are used. Consider the third
example scheme (third row of Table 2). The outer code is designed for correcting 22 or
fewer symbol erasures and two or fewer symbol errors. The inner code is (';(3). The total
code rate for this scheme is 0.744. The rates of example schemes shown in Table 3 are
less than 0.6 and greater than 0.4, and example schemes with lower rates are shown in
Table 4. Consider the fifteenth example scheme (the third row of Table 4). The inner
code ('1(14) is the (16,5) biorthogonal code which is designed to correct three or fewer
bit-errors. The outer code is the (31,15) Reed-Solomon code with symbols from GF(2%)
and minimum distance 17 which is designed for correcting seven or fewer erasures and two
or fewer symbol errors. The code rate of this example scheme is 0.151. Let P., denote
the upper bound on the error probability given by the right-hand side of (24). The bound
P.. for each of the example schemes is computed for various high bit-error rates between
0.5 x 1072 to 3 x 107!, We see that all the example schemes provide extremely high
reliability. For example, consider the 3rd example scheme (see Table 2). For bit-error
rate € = 0.5 x 1072, the scheme has an error probability upper bounded by 3.82 x 10~24!
The probability of a decoding failure (or erasure) is 2.35 x 1072 i.e., there are less than
3 erasures in a thousand transmitted code blocks. If the 5-th example scheme (see Table
2) is used, the error probability is less than 1.72 x 10~°® for bit-error rate ¢ = 0.5 x 1072,
and the decoding failure is 1.50 x 10™*! The high-rate example schemes are suitable for

high date rate near earth satellite communications for large file transfer.

The low-rate example schemes are suitable for low-data rate deep space communica-
tions. For example, consider the 16-th example scheme (see Table 4). For bit-error rate ¢

as high as 107!, the error probability is less than 2.23 x 10742

, and the probability of a
block erasure is 1.87 x 10~% (less than 2 erasures in one hundred million transmitted code
blocks). For bit-error rate € = 0.5 x 107!, the error probability is less than 8.30 x 10792,

and the probability of a block erasure is 3.76 x 107*! Suppose the data rate is 100 kps.

1




With a bit-error rate € = 0.5 x 1072, it will take many million years to have a block erasure!
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APPENDIX-I

A Procedure for Computing pe(u, @)

For 1 < u < m;,0 < i< ny— ¢ and aeGF(2°) let Ai»])(u,a) be the number of
codewords in C; whose u-th symbol (or £-bit byte) is a and whose binary weight excluding
the u-th symbol is i. Let C'{ denote the dual code of €. Similarly, let Bgl)(u,a) be the
number of codewords in (';- whose u-th symbol is a and whose binary wieght excluding
the u-th symbol is . Let as be the f-th bit of the binary representation of a, and let |«

be the weight of the binary representation of a.

Let I/i";‘l;)(n) denote the number of binary n-tuples with weight j which are at a Ham-
ming distance s from a given binary n-tuple with weight :. The generating function for
(i),
VV]-,S (n) 1s

Z Z W ()XY = (1+ XY (X + Y, (I-1)

It follows from the definition of pe(u,a) that

ny—{ nq,—¢ [4
= Z Agl)(u,a) Z Z
i=0 j=0 j'=o0
ty  ty—s
Z Z W(z) Tl] —f)
WDt (1 - me (I-2)

For relatively small k;, say less than 25, the weight distribution
{ADw,a) 1 0<i<ng-¢}
for an o in GF(2!) can be computed by generating 2*1 ¢ codewords of C;.
For k; > ny — ky, it is easier to compute p.(u, a) by generating the weight distribution
(B (u,a) : 0<h<ny -4}
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Using the generalized MacMillians’ identity [3, p 147], we have

'nl—-f

AV (wa)y =27 N N B (w,8)

Led
h=0 3¢GF(2%)

¢
. Pi(h,ny - £) H P.,(B5,1). (I —3)
f=1
where P;(-,-) is a Krawtchouk polynomial [3, p. 129] whose generating function is
ZPzn =(1+Y)"{1-Y) (I —4)

From this identity, we have

¢
H ay ,Bf, = (_1)(|a|+|/3|—{a+ﬁ|)/2 (I- 5)
f=1
and
ny—4£
Z Pi(h,ny — (1 + XY Y X 4+ V)
i=0
z(l+X)n1—f—h(l_X)h(1+y)n1—l-h(1_Y)h‘ (1—6)

It follows from (I-1), (I-3), (I-5) and (I-6) that

7'=0 s'=0

ny—¢ ny—€ ni—¢ [4 ¢
S AV, ) {Z Z W (n z)XfY’}{Z Y owile Xf'Y"}

nl—l

=R XY Ry Y S B (w,g)

h=0 BeGF(at)

(=1)elHIBI=letBD/2 (1 4 xym=t=h (1 _ X)h(1 4 Y)mth(] _y)h

711—[

— o~(n1—k1) Z Z Bgl)(u,5)(_1)(lal+|ﬁ|~la+5|)/2

h=0 BeGF(2)

(14 X))tk = Z Q' (h,ny — €, |al, 6, X)Y?, (I-1)
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where

n+m
1+ XV)" MY+ +Y) (1 -Y) = ) Q(i,n,h,m, X)Y?,
s=0
Q'(iyn, hym, X) = 3" Poglivn) 3 W, (m) X7
=0 Jj=0

Taking the terms on both sides of (I-7) for which the degree of Y is ¢; or less, substituting
€/(1—¢) for X and 1 for Y and multiplying both sides by (1 — €)™, we obtain the following

formula from (I-2):
i —f

Pel(u,a) =271 — 6 3 (1 - 2¢)"
h=0

Y Qu(hyna = G lal £ e/(1 - €))

s=0

Z Bgll)(u’/3)(_1)(|0|+|l3|‘|°‘+5|)/2-
BeGF(2¢)

If ' is a shortened cyclic code, min{¢, n; —k; } columns of a generator matrix corresponding

to the u-th symbol position are linearly independent, and for a symbol 3,
{B)(u,8) : 0<Sh<m -0

can be found by generating 2™ ~*1=¢ codewords of the dual code Ci- of C,.
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APPENDIX II

. 1
A Procedure for Computing Pe(,a)l,'--,am

Let H be a subset of {1,2,---,m,}. Let Pél)(H) be the probability that a segment is
not erased and for heH, the h-th £-bit byte of the decoded segment is error free. In [1}, a
formula for computing P*)(H) was derived. P'V(H) can be computed if min{k;,n; — k;}

is relatively samll, say less than 25. For small m;, say less than 11,
{PUYH) : HC{1,2,---,m}}

can be found. Then it follows from the principle of inclusion and exclusion that

S

(1) Wi—
Peqalsa2!“'x Z | | ° Z P

s=0 ACW
|A=s

where

W={i:a=1<i<m}and H ={1,2,---,m} — H.

16
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Table 1

Inner Codes

Rate
Inner Codes (n1, k1) of the my dy t Generator polynomial
inner code
Ci(1) shortened (55,48)  0.873 6 4 1 (1+ X)o1(X)
Hamming code
C1(2) shortened (56,48)  0.857 6 4 1 1+ X)1+X3+X7)
Hamming code
C1(3) shortened (47,40) 0.851 5 4 1 (1+ X)¢(X)
Hamming code
C1(4) shortened (48,40)  0.833 5 4 1 1+ X)1+ X3+ X7)
Hamming code
C1(5) shortened (30,24)  0.800 3 4 1 (1+X)1+ X%+ X%)
Hamming code
C1(6) shortened (61,48) 0.787 6 6 2 (1+ X)o1(X)pa(X)
BCH code
Ci(7) shortened (53,40) 0.755 5 6 2 (1+ X)o1(X)ds(X)
BCH code
C1(8) shortened (59,40) 0.678 5 8 3 1+ X)¢1(X)oa(X)os(X)
BCH code
C1(9) Goppa code (64,40) 0.625 5 9 4
C1(10)  extended (32,16) 0.500 2 4 3
BCH code
Ci(11)  extended (24,12) 0.500 2 8 3
Golay code
C1(12)  biorthogonal (8,4) 0.500 1 4 1
code ’
C1(13) shortened Type 0 (51,24) 0.471 3 10 4 (14 X)1(X)oa(X)ds(X)
DTI code 7(X)¢21(X)
C1(14)  biorthogonal (16, 5) 0.313 1 8 3
code
C1(15)  biorthogonal (32, 6) 0.188 1 16 7
code

The generator polynomials are shown only for the shortened cyclic codes, and
#1(X) is the minimum polynomial of a* with a as a root of 1 + X + X©.

18




ZT-368°T T1-4€0°T 62-ACL'1 95-A8T'¥ g6-AVL'6 oq
07001 1-956'V b-A56°¢E LALTT Z1-d99°S d + (L)' ¢ 22 9 ¢ €& €IT SST 0990
91-d0Z'1 11-366'1 9z-d¢1'9 16-A61°1 06-300°¢ “d
07001 1-459°6 £-q69°¢ 9-429°'C -301°L g+ *? 9o z 12 q 9 €& €T GST 8890
ST-ATH'T 11-490°'T TT-AVLL 6€-A0L'T 99-AST'T
0d00°1 1-408°6 Z-HEE'E P-H0S°1 8-HS¢E"S g+ g Amvﬁv 4 02 d g€ €€ €€T 692 00L0
.uvm
o+ §20%) 4 ¢ ¢¢ €I SST 6TL0
Zz-As1'8 11-929°6 11-4.8°9 y2-AC8'¢ d
0d00°T 0d00°'T -4l £-ASE'T “d +*° (¢)'o T 4 § €¢ €3T SS% ¥hLO
—_ 02-460°S ST-ASH'1 vT-AILT 6V-422°9 od
e 04001 1-40G°8 g-lAGL'T L-A8e'8 “d + () 7 12 94 9 €¢ €IC 99T 0SL0
62-420°1 9T-A6%'1 Z1-390°1 ¥Z-A10°C 6v-AE8'¥
04001 051001 1-7£8°8 rACARN| 9-A€T'9 g+ (o T 0T d 9 €€ €IT SST ¥9L0
0L XE€=2 ,0IXg=2 L 0IXI=2 o 0[xg§0=? -0 x20=>2 spod %3 3 1/d PI Y ty tu oyey
3j.l1 10113-)1q Ruuy

$apo) 1INQ SY (£22'6GT) YIm SIpO)) SIPEISE)) 10}
1on1] Butpoda(y Jo Aiqeqoid 3y uo spunog 1addpy pue
.—O.:@ wﬁmﬁouoﬁ— J0 .w.:ﬂ—mw,m w=:uOu,wQ .*O m.u:_:ﬁ_.—wﬂo.unm N o—ﬁﬁ,ﬁ

19




LT-862°1 2 P 2¢-160'2 SH-d00°2 69-A18°G g
¢-d6V'¥ v-aLe 9-168"2 R FAARS 1ALl d + 5 (tty'o ¢ o1 q4 T ¢ THE €9 €L€0
£1-420°¢ L1-6G°1 62-161°9 0g-ASH'1 £6-d01°C “d
[-3168'9 ¢-d¢0°'1 L-AGLT 01-dSh'V ST-d0%°9 Yd + e T 9t 4 ¢ €€ €IT 99 CIvo
21-A1T°8 JARC AN 8Z-A1S°'1 LP-A19°2 £8-Ubv € d
2-d¢6'6 €-4L6°¢ p-A8¢°1 L-49¢°L [1-4%0°g g+ (o1)'> ¢ ¥#2 q € €€ €IT 99T LEVO
P1-408°1 11-dst°c LI-A8T'Y pe-ALy 1 ¥L-d90°'8 “°d _
04001 I-912'8 ¢-ALS'S g-ALL9 6-18¢'8 d+ ()t 7 ¢z 4 ¢ €€ €T¢ 99T LPSO
— e1-d9¢1 11-4G8'1 1Z2-48¢€°9 1$-A¥%2'9 *d
—_ 0d00°1 1-45G°L S-H92° . 01-469°S “d + °d (8)tO ¢ 12 A4 ¢ €€ €T 99T €690
-0l XGg=3 - 0IXp=2 . 0lXg=2 ~0IXT=3  0IXT=23 spo> 1 fif /g P Cp iy tu 9jey
I3kl uo:.wL:Q ._a:::

1oy Sutpoda(] Jo Ayiqeqold 3y uo spunog raddp pue
10117 Surpoda(y 1o anjred Surpora(q jo saMyliqeqold ¢ 2IqR],

20




81-:89°2 11-46S°S Zy-AeTT 76-40£°8 d
0001 1-7460°¢ 8-q18'1 SI-A9L'E g+ 5 (st)'o 2 07 q
£1-489°9 £1-400°2 £2-408'T 0F-A88°Y 69-19G°¢ “d
0d00°T 1-482°6 £-H40g'1 LA T eI-4zL°¢ d + (r1)to ¢ L q
6-d1G°T 01-d88'L S1-309°6 12-426'9 0e-AZL'Y d A
04001 1-466°6 1-4€9°9 T-dLT°1 £-7403°9 R S (zt)to o ¢ q
Z1-4¥8°'2 11-426'2 L1-368°C TH-d18°¢g 18-A6L°Y
0400'T 0d00°T 1-A86°L ¢-A6b'y 8-422'¢ g+ (1) ¢ 1e q
(-0T Xe=23 0T XZT=3 .01l XT=2 ,.0[xXg¢0=2 ;_0IxXZ0=? apod & *°r A\m
Jjel uozoaﬁﬁ .—o:—:

Jo117 Fupoda(q Jo Ajiqeqoid 9y) uo spunog 19dd) pue
10115 Sutposa(] 1o ainfre] 3utposs(] Jo san[iqeqold ¥ 9qrL

21




